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Abstract. Indistinguishable objects often occur when modelling prob-
lems in constraint programming, as well as in other related paradigms.
They occur when objects can be viewed as being drawn from a set of
unlabelled objects, and the only operation allowed on them is equality
testing. For example, the golfers in the social golfer problem are indis-
tinguishable. If we do label the golfers, then any relabelling of the golfers
in one solution gives another valid solution. In this paper, we show how
we can break the symmetries resulting from indistinguishable objects.
We show how these symmetries induce symmetries of types built from
indistinguishable objects, for example in a matrix indexed by indistin-
guishable objects. We then show how the resulting symmetries can be
broken correctly and completely. As the method can be prohibitively ex-
pensive, we also study methods for breaking the symmetry only partially.
In Essence, a high-level modelling language, indistinguishable objects
are encapsulated in ‘unnamed types’. We provide an implementation to
automatically break symmetries of unnamed types.

Keywords: Symmetries · Modelling · Constraint programming · Auto-
mated model transformations

1 Introduction

Symmetries have long been understood to be both widely occurring and a source
of inefficiency for solving technologies. As a result, this has been an exceptionally
well-studied topic in constraint programming [13], Boolean satisfiability [25], and
mixed-integer programming [17]. A particularly important case of symmetries
is where the problem has indistinguishable objects. These are objects which,
when interchanged, give us essentially the same situation. For example, two
machines of the same model are equivalent in a factory scheduling problem, and
any valid schedule will give an equivalent schedule when two such machines are
interchanged. Further complications are introduced when we have multiple sets
of indistinguishable objects, and we are not allowed to interchange objects of
the different sets.
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When modelling problems with symmetries, due to the limited choices of rep-
resentations, one tends to introduce symmetries that are not in the original prob-
lem. These symmetries must then be broken, e.g. by adding symmetry breaking
constraints. High-level modelling languages such as Essence allow one to specify
the problems in a more abstract way, and symmetries introduced by modelling
can then be handled automatically by Conjure, an automatic model rewriting
tool. In Essence, ‘unnamed types’ were introduced to capture the notion of
indistinguishable objects [5], to express sets of objects whose labels are not im-
portant. Compound types can be constructed in terms of these unnamed types,
for example, we can have sets of tuples of indistinguishable objects. However,
while unnamed types were present in the first version of Essence, previously
Conjure ignored the symmetry of unnamed types and simply transformed them
into integers. Handling these symmetries is significantly more difficult than other
symmetries already managed by Conjure. We show how these symmetries can
be broken automatically, without requiring expertise in symmetry breaking.

To do so, we extend Essence to support permutations of types. These per-
mutations allow us to represent the symmetries of indistinguishable objects and
provide a base for a general and extensible framework for breaking the sym-
metries introduced by these indistinguishable objects. By showing how we im-
plement permutations, we show how other technologies that want to deal with
the symmetries of indistinguishable objects can adopt a similar approach. As
the types of Essence variables can be arbitrary nested, and the list of ob-
jects we want to handle might be extended in the future, we give the semantics
of Essence types recursively, in terms of a much smaller set of mathematical
objects. We use this semantics to define how symmetries of indistinguishable
objects induce symmetries of objects constructed from them. We also show how
a well-defined total ordering on a compound type can be built up in terms of
the ordering of its constituent types.

These ingredients let us generalise the lex-leader symmetry breaking method
to compound types. We will illustrate our technique in the context of Conjure,
but we will also discuss how other modelling languages can take the same ap-
proach to remove symmetries due to indistinguishable objects. Often we do not
want to break all of the symmetries in a model since that encoding would re-
quire too many constraints and so will be detrimental to performance. In fact,
checking if an assignment satisfies lex-leader symmetry breaking constraints is
NP-hard in general [7]. For this reason, we also explore weaker, partial forms
of symmetry breaking, offering a modelling choice between fast and complete
symmetry breaking. We show, using well-known constraint models containing
unnamed types, how our symmetry breaking encodings can be applied to them
using this abstraction. As an example, we show that the commonly used ‘double-
lex’ method [9] naturally arises from our methods.

In Section 2, we give a brief overview of symmetry breaking in constraint
programming and the Essence language, and then define the symmetries of
unnamed types in Section 3. We then define the symmetries induced by unnamed
types and see how we can break them, completely or incompletely, using a newly
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defined total order of the values of any type. In Section 4, we describe the method
implemented in Conjure and in Section 5 give some case studies.

Motivating Example: Social Golfers Problem The problem asks for a
schedule for p people playing golf over w weeks in g groups per week [14]. To
attain maximum socialisation, no two different golfers play in the same group as
each other in two different weeks. Notice that the problem only cares whether or
not two golfers are the same person or different people. That is, the golfers are
all indistinguishable. Similarly, the groups are also indistinguishable, and so are
the weeks. For example, the constraints take no account of weeks being consec-
utive or otherwise: two weeks are either identical or distinct. This means that
given any solution to the problem, we can obtain another solution through any
permutation of the golfers. Similarly, we can also permute the groups and the
weeks freely. Furthermore, we can apply any permutation of the golfers, groups
and weeks concurrently to get another solution. With so many symmetries in
hand, manually breaking them may require some modelling expertise, whether
the aim is to break all symmetries completely or to do some form of partial
symmetry breaking. The approach we take in this paper allows this to be done
automatically. We will do this in the context of Conjure, working on the un-
named types allowed by Essence, in this case for golfers, weeks and groups. Our
approach is general and could be applied in other modelling languages.

2 Background

A constraint satisfaction problem (CSP) P with n variables is a triple pV,D,Cq,
where V “ tV1, V2, . . . , Vnu is the set of variables, D consists of sets DompViq,
called the domain of Vi, for each 1 ď i ď n, and C “ tC1, C2, . . . , Cku is the set of
constraints, where each Ci is a subset of the Cartesian product

Ś

1ďiďn DompViq.
An assignment of the variables in V is an n-tuple pa1, a2, . . . , anq, where each
ai P DompViq. An assignment is a solution to P if it is in the intersection
Ş

1ďiďk Ci. The solution set to P is the set of all solutions to P.
A permutation of a set Ω is a bijection from Ω to itself. We typically

denote permutations using the cycle notation. That is, a permutation σ :“
pa11, a12, . . . , a1k1qpa21, a22, . . . , a2k2q . . . par1, ar2, . . . , a1kr q means that, for all i,
we have aij ÞÑ aipj`1q for j ă ki and aiki ÞÑ ai1. The composition of two permu-
tations σ1 and σ2 is denoted by σ1σ2, the inverse of a permutation σ is denoted
by σ´1. For ω P Ω and a permutation σ over Ω, we denote the image of ω
under σ by ωσ. A permutation group G over a set Ω is a set of permutations
over Ω that is closed under compositions and inverses. Such G necessarily con-
tains the identity 1G, the permutation that fixes all points in Ω. The set of all
permutations over Ω is called the symmetric group of Ω, denoted by SympΩq.

A group action of a group G on a set Ω is a map ϕ : G ˆ Ω Ñ Ω such
that ϕp1G, ωq “ ω for all ω P Ω and ϕpgh, ωq “ ϕph, ϕpg, ωqq. When such a
group action exists, we say that G acts on Ω and G is a symmetry group of Ω.
Further, we write ωg for ϕpg, ωq, which aligns with the notation of permutation
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application because SympΩq naturally acts on Ω. Group actions formalise what
we intuitively understand as symmetries: the identity permutation should fix the
object in question, and applying two permutations consecutively should be the
same as applying the composition of the two permutations.

When we have a symmetry group G acting on the domains of the decision
variables V , we have an equivalence relation on the domain set D (and hence
the set of all solutions), where two assignments a and a1 are equivalent if there
exists a permutation g P G such that ag “ a1. A symmetry breaking constraint
is a constraint which, when added, removes or reduces symmetric values from
consideration. A sound (resp. complete) symmetry breaking is one where at
least one (resp. exactly one) solution from each equivalence class is preserved.
Many symmetry breaking strategies use some ordering. For a total ordering ď

on set A, the lexicographical ordering ďlex over ď is the total ordering on the
tuples/matrices over A such that pt1, t2, . . . , tkq ďlex pt1

1, t
1
2, . . . , t

1
kq if and only if

either ti “ t1
i for all i, or there is an i such that ti ă t1

i and tj “ t1
j for all j ă i.

Symmetry breaking for constraint programming is very well studied (see
[13] for an overview). Two closely related concepts are interchangeability of val-
ues [10] and intensional permutability of variables [23], but they only concern
value and variable symmetries respectively. Our work differs from these as we
take a type-directed view of indistinguishable objects, which means that types
with interchangeable values can be used to build higher-level types. Depending
on how we build these higher-level types, the symmetries can be variable or value
symmetries, or indeed both or neither, as we shall see. This suggests that a new,
more general, method of reasoning with symmetries is needed.

Symmetries are also introduced by Conjure when the abstract types in
Essence are refined to lower-level types in Essence Prime (see Section 2.1).
Currently all but the symmetries arising from unnamed types are automatically
broken by Conjure (see [2] for more details). Symmetries in the constraint mod-
elling language MiniZinc is also extensively studied (see, for example, [6,18]),
but our work here differs in that we consider higher-level abstract types. Out-
with constraint programming, the symmetries of indistinguishable objects are
exploited in the SAT solver SymChaff, which requires a symmetry description
as input [24]. It is shown that such a description can be generated from annotat-
ing PDDL models, but we operate on a much higher level language. The field of
lifted inference started by Poole [21] also uses the symmetries of indistinguish-
able objects to improve efficiency, but the focus is on probabilistic reasoning and
model counting.

2.1 Essence as a Modelling Language

Essence and Essence Prime are both constraint specification languages. The
domains of decision variables in an Essence or Essence Prime problem spec-
ification are defined by adding attributes and/or bounds to built-in types. For
example, in Essence, we can have a variable of domain set (size 3) of

matrix indexed by int(1..5) of bool. In this paper, matrices indexed by
rI1, I2, . . . , Iks refers to k-dimensional matrices where the values are accessed by
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values of I1 ˆ I2 ˆ . . . ˆ Ik, so an entry of such a matrix m is mri1, i2, . . . , iks,
where each ij is in Ij .

Types in Essence and Essence Prime are divided into two kinds: atomic
and compound. The atomic types of Essence Prime are Booleans and inte-
gers, while Essence further supports enumerated types and unnamed types.
Compound types, such as matrices, are defined using atomic types and can be
arbitrarily nested. Essence Prime only support the matrix compound domain,
while Essence also supports tuples, records and variants. Essence further sup-
ports abstract decision variables of set, multiset, sequence, function, relation
and partition. Non-abstract domains are also called concrete domains. For more
details, see [2] or the documentation at https://conjure.readthedocs.io.

Remark 1. For a type T , we denote its set of all possible values by ValpT q, which
is defined in terms of matrices, multisets and tuples: the values of bool, int
and enum are what one would expect; the values of a tuple, record, variant
and sequence can be naturally defined as tuples; the values of a matrix are
matrices, the values of a set, mset, partition can be naturally defined as
(nested) multisets; for types τi, the values of a function τ1 Ñ τ2 are subsets
of Valpτ1q ˆ Valpτ2q such that there are no two elements with the same value
in its first position; the values of a relation pτ1 ˚ τ2 ˚ . . . ˚ τkq are subsets of
Valpτ1q ˆ Valpτ2q ˆ . . . ˆ Valpτkq. Note that the representations presented here
give abstract meaning to the types, carefully selected to simplify the theory, but
may not adhere to the representation of the underlying implementations.

There are two advantages in defining ValpT q in terms of matrices,
multisets and tuples. Firstly, this allows us to avoid large case splits over types,
e.g. when defining the symmetries of compound objects built from unnamed
types. Furthermore, this makes our method more general and applicable across
other platforms. As long as we define the values of a type in a similar way,
either for a new type in Essence or a type in other systems, the method de-
scribed in this paper still applies. Note also that we can also have all types to
be defined as multisets and tuples only. This is because a matrix m indexed
by rτ1, τ2, . . . , τks of τ can be represented in terms of multisets and tuples as
tpi1, i2, . . . , ik,mri1, i2, . . . , iksq | ij P τj for all 1 ď j ď ku.

Conjure transforms a problem specification (a model) in the Essence lan-
guage into a problem specification in the Essence Prime language, through a
series of rewrites or transformations (see [2]). Concrete domains are represented
directly in Essence Prime, possibly by separating into their components. These
transformations are straightforward and do not introduce any symmetries.

The abstract types are removed in a series of rewrites called refinements.
For each abstract domain, there is a choice as to how it can be translated into
concrete domains. Such a choice is what we call a representation of the abstract
domain. The constraints involving the abstract domains are rewritten according
to the selected representation. In some cases, an abstract type is represented as a
concrete type that satisfies certain constraints (e.g. sets as lists with all different
elements). Such constraints are called structural constraints. We will not detail

https://conjure.readthedocs.io
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representations used in Conjure here, but will describe the ones which we use
in examples. We direct interested readers to [2, Table 5] for a summary of the
representations in Conjure. Modelling symmetries are introduced if we trans-
late abstract decision variables to a variable with a bigger domain, which may
result in the increase of solution number. In Conjure, modelling symmetries
without unnamed types are always broken completely. The complete symmetry
breaking constraint for the refinement of each abstract type in Essence is well
studied. Please refer to [2] for details.

3 Unnamed Types and How to Break Them

To model indistinguishable objects, we use the concept from Essence of ‘un-
named types’. While Essence provides unnamed types as a built-in type and we
implement our techniques in Conjure, our work applies generally. For any mod-
elling situation to which unnamed types apply, the techniques we propose can
be used whether or not the modelling language used provides unnamed types.
The advantage of having unnamed types built in, as in Essence, is simply that
no additional work is necessary to recognise the existence of indistinguishable
objects. In this section we show the value in modelling with unnamed types,
discuss the symmetries inherent in unnamed types and how to break them.

3.1 Modelling with Unnamed Types

We shall briefly show some examples of how one would use unnamed types in
modelling, to illustrate their usefulness for high-level modelling and the difficul-
ties in breaking their symmetries. Note that we can model these problems using
more abstract Essence types, but we choose to avoid these abstract types in
this paper in hope to better illustrate the potential use of unnamed types.

Recall the social golfer problem from Section 1. A model may have, as de-
cision variable, matrix indexed by [int(1..w), int(1..p)] of int(1..g),
together with constraints for maximal socialisation and to make sure that the
group sizes are as expected, which we omit here. As we have seen, the golfers,
weeks and groups can be permuted while still giving us valid schedules. The
labels for golfers, weeks and groups, encoded as integers here, do not matter –
permutations of them, when done consistently, will give us equivalent solutions.
So we can define golfers, weeks and groups as unnamed types of size p, w and g
respectively, using the syntax letting golfers be new type of size p, and
similarly for weeks and groups. Then we can take the decision variable to be
matrix indexed by [weeks, golfers] of groups, and let Conjure handle
the symmetries of unnamed types automatically.

The template design problem [27] arises in a printing factory that is
asked to print c1, c2, . . . , ck copies of designs d1, d2, . . . , dk respectively. Designs
are printed on large sheets of paper and each sheet can hold at most s designs.
A template is defined by the designs to be printed on a sheet (at most s of them,
can be repeated, order does not matter). Given a number n, we want to find n
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templates t1, t2, . . . , tn, and the number of copies for each of them to satisfy the
printing order, while minimising the total number of printing. One might model
this problem with two decision variables: (i) matrix indexed by [int(1..n)]

of int, called M1, to encode the number of copies needed for each template;
and (ii) matrix indexed by [int(1..n), int(1..k)] of int(1..s), called
M2, to encode the number of copies of each design in each template. As before,
the labels of the templates, currently integers 1 to n, do not matter – permuting
the labels gives equivalent solutions. Since the templates are used as indices in
two decision variables, any symmetry handling of one must be consistent with
the other. For example, enforcing that M1 must be sorted and at the same time
enforcing that rows of M2 are sorted may give us a wrong result. An alternative
would be to replace int(1..n) in the indices for both M1 and M2 with an
unnamed type of size n. Conjure shall then automatically and consistently
break their symmetries.

The set-theoretic Yang-Baxter problem asks for a special class of so-
lutions to the infamous Yang-Baxter equations, which gives insights to various
subfields of algebra and combinatorics (see [3] for references). A special class of
the set-theoretic solutions of the Yang-Baxter equation can be modelled as a
mapping φ : X ˆ X Ñ X which satisfies certain constraints (see [3] for details),
for a set X. As is common in mathematics, the elements X are unlabelled and in-
terchangeable. In this case, if X is realised as a concrete set of tx1, x2, . . . , xnu,
then any permutation of the elements of X in the definition of φ gives an-
other mapping that is essentially the same (or equivalent). As, again, is common
in mathematics, we want to count the number of solutions up to equivalences,
which means that we want to remove the symmetries due to the interchangeabil-
ity of the elements of X. Such a map φ can therefore be modelled as a matrix

indexed by [T,T] of T, where T is an unnamed type. In this problem, the
same unnamed type is used both as indices (twice) and elements of a matrix,
so swapping two values in T requires swapping two rows and two columns, and
also all occurrences of the two values for all variables. So the symmetries of
this matrix is neither a variable nor a value symmetry (see [13]), the two most
well-studied families of symmetries in constraint programming, as we require
the synchronisation of both. Expressing correct symmetry breaking constraints
requires significant expertise in constraint modelling, which limits the ability of
many constraint users to deal with the symmetries of their problems.

3.2 Symmetries of Unnamed Types

As we have seen above, when modelling, we often want to express that two items
are equivalent or indistinguishable from each other. In Essence, we model these
using unnamed types, which are sets of known size with implicit symmetries:
values of an unnamed type are unlabelled and hence interchangeable. The values
of unnamed types are not ordered and the only operations allowed on unnamed
types are equality and inequality. Unnamed types are atomic so they can be used
to construct compound domains in many ways, including as members of a set,
the domain or image of a function, or the indices of a matrix.
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In order to define symmetries inhabited by variables constructed from un-
named types, we need to first define the set of possible values of unnamed types.
This proves to be difficult since as soon as we enumerate its values, we have put
a label on its elements and hence introduced symmetries. We therefore define
unnamed types as an enumerated type that comes with a symmetry group:

Definition 1. An unnamed type T of size n is an Essence type with value
set ValpT q “ t1T , 2T , . . . , nT u, together with a symmetry group SympValpT qq

consisting of all permutations of ValpT q.

For example, in the social golfer problem, we can represent three possible
golfers as an unnamed type G of size 3. Then ValpGq is t1G, 2G, 3Gu. Note that
a value of an unnamed type is unique to its type. For example, 1T can only be
a value of the unnamed type T , and not at the same time be a value of another
unnamed type U . This means that the values of distinct unnamed types T and
U are always disjoint. To simplify notations, we write SympT q for SympValpT qq.

As we are dealing with indistinguishable objects, the symmetry group in Def-
inition 1 is a symmetric group. However, our method of breaking these symme-
tries completely never uses the properties of symmetric groups. So the method is
generalisable to the case where we have an atomic type T with any permutation
group G on its values as its symmetry group.

Induced Symmetries on Compound Types When solving a problem with
unnamed types, we only want to retain the solutions up to symmetries. In the
social golfer example, a solution is equivalent to another assignment where we
have swapped two of the golfers, and so we should only output one of them.
However, a decision variable can be an arbitrarily-nested construction of various
Essence types. So next we define how the symmetries of unnamed types induce
symmetries of the compound variables constructed from unnamed types.

Definition 2. Let T be an unnamed type of size n and X be a compound type.
Then SympT q is a symmetry group of ValpXq, where the action is defined recur-
sively by: for all g P SympT q, and x P ValpXq,

1. if x is a value of type T , then xg is the image under the action on ValpT q;
2. if x is atomic and x is not of type T , then xg “ x;
3. if x is a matrix indexed by rI1, I2, . . . , Iks of E, then the image xg is a matrix

where its i-th element xgris is pxripg´1
qsqg, where ipg´1

q denotes the preimage
of i under g;

4. if x is a multiset tv1, v2, . . . , vku, then xg “ tvg1 , v
g
2 , . . . , v

g
ku;

5. if x is a tuple pv1, v2, . . . , vkq, then xg “ pvg1 , v
g
2 , . . . , v

g
kq.

One can check that this indeed gives a group action. While there may be
other possible group actions, we chose the most natural one. Recall from Re-
mark 1 that possible values of a non-atomic variable can be constructed from
only matrices, multisets and tuples. So Definition 2 does in fact define the image
of all possible types in Essence, by deducing from Remark 1, and considering
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sets as a special case of multisets (with multiplicity one for each element). As
noted earlier, as long as we define types in a similar way, we can obtain the
action on any compound type of other modelling languages using Definition 2.

Example 1. Let T be an unnamed type of size 3, and let X be of type function
T Ñ int(4..5). A possible value of X is x “ tp1T , 4q, p2T , 5q, p3T , 4qu, repre-
senting the function that maps 1T and 3T to 4, and 2T to 5. Consider the permu-
tation g “ p1T , 2T q swapping 1T and 2T and leaving 3T fixed. Then the image
of x under g is xg “ tp1T , 4q, p2T , 5q, p3T , 4qug “ tp1T , 4qg, p2T , 5qg, p3T , 4qgu “

tp1gT , 4
gq, p2gT , 5

gq, p3gT , 4
gqu “ tp1gT , 4q, p2gT , 5q, p3gT , 4qu “ tp2T , 4q, p1T , 5q, p3T , 4qu,

representing a function that maps 2T and 3T to 4, and 1T to 5, and where the
subsequent expression rewriting uses Parts 4,5,2,1 of Definition 2 respectively.

One may find the presence of preimage in the matrix index of Definition 2 to
be unintuitive, but it is needed so we have a group action. One can also check
that this definition is consistent to if we represent matrices as sets of tuples.

Example 2. Consider a 1-dimensional matrix m “ ra, b, cs indexed by elements
of unnamed types 1T , 2T , 3T . Let g be the permutation p1T , 2T , 3T q and h be
p1T , 2T q. From Definition 2, we find that the image of m first under g and
then under h is pmgqh “ rc, a, bsh “ ra, c, bs. We get the same value if we
take the image of m under the composition of g and h, as gh “ p2T , 3T q and
mgh “ ra, b, csp2T ,3T q “ ra, c, bs. However, if Definition 2 had defined pmgqris to
be pmrigsqg instead, pmgqh “ rb, c, ash “ rc, b, as, which is not mgh.

Symmetries of Multiple Unnamed Types If a variable X is constructed
from multiple unnamed types, say T and U , any combination of elements in
SympT q and SympUq also permute ValpXq. We say that the direct product
SympT q ˆ SympUq also acts on ValpXq. In general, the direct product of groups
G1, G2, . . . , Gk is the Cartesian product G1 ˆ G2 ˆ . . . ˆ Gk consisting of all
k-tuple pg1, g2, . . . , gkq where each gi P Gi. If each Gi acts on a set Ωi and the
Ωi’s are disjoint, the direct product G1 ˆG2 ˆ . . .ˆGk acts on the disjoint union
Ť

1ďiďk Ωi by αpg1,g2,...,gkq “ αgi if α P Ωi.

Definition 3. Let T1, T2, . . . , Tm be distinct unnamed types. Then the direct
product D :“ SympT1q ˆ SympT2q ˆ . . . ˆ SympTmq is a symmetry group of
ValpXq, where the action is defined by vpg1,g2,...,gmq “ p¨ ¨ ¨ ppvg1qg2q...qgm , for
each element pg1, g2, . . . , gmq of D and v P ValpXq, and the application of each
gi is as defined in Definition 2.

This gives a group action because each SympTiq acts on ValpTiq and distinct
unnamed types are disjoint sets. Further, as the gi’s permute disjoint sets of
points, they commute. That is, gigj “ gjgi for all i, j. Then, since we have a
group action, taking images under them is commutative since pvgiqgj “ vpgigjq “

vpgjgiq “ pvgj qgi for all i, j. So the order in which we take the images when
considering permutations of different unnamed types does not matter, hence the
order of unnamed types in the direct product also does not matter.
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Example 3. Let T and U be unnamed types of size 2 and 4 respectively, and let
M be of type matrix indexed by [T, int(1..3)] of U . ThenD “ SympT qˆ

SympUq acts on ValpMq. Consider m “ rr1U , 2U , 3U s, r2U , 3U , 4U ss P ValpMq

where we write the elements of m in the order 1T , 2T , and let g “ p1T , 2T q

and h “ p1U , 3U qp2U , 4U q. Here g swaps 1T and 2T , whereas h and swaps 1U
and 3U and also 2U and 4U at the same time. Then pg, hq P D and by Def-

inition 3, mpg,hq “ prr1U , 2U , 3U s, r2U , 3U , 4U ssgq
h
, which gives rr2U , 3U , 4U sg,

r1U , 2U , 3U sgsh “ rr2U , 3U , 4U s, r1U , 2U , 3U ssh as g permutes the indices and fixes
values not from T . Now as h fixes the indices 1T , 2T and the indices 1, 2, 3, this is
just rr2U , 3U , 4U sh, r1U , 2U , 3U shs “ rrp2U q

h
, p3U q

h
, p4U q

h
s, rp1U q

h
, p2U q

h
, p3U q

h
ss.

Finally, h permutes values in ValpUq, so mg “ rr4U , 1U , 2U s, r3U , 4U , 1U ss.

If X is our only decision variable, then we obtain an equivalence relation on
the set of all solutions, where two solutions x and y in ValpXq are equivalent if
xg “ y for some g P G. If we have multiple decision variables V1, V2, . . . , Vd, then
we can reduce to the case where there is only one decision variable, which is the
tuple pV1, V2, . . . , Vdq. This is particularly important when we want to ensure
the consistent application of permutations of unnamed types across multiple
variables, such as in the template design problem from Section 3.1.

3.3 Breaking the Symmetries of Unnamed Types

A common and general way to break symmetries is to use the lex-leader con-
straints [7]. In general, for a group G acting on the domain ValpXq of a variable
X, the (value) lex-leader constraint LLĺpG,Xq for X under G with respect to a
total ordering ĺ of ValpXq is the constraint @σ P G.X ĺ Xσ. This asserts that,
in any G-induced equivalence class of ValpXq, only one value (the smallest one)
can be assigned to X. Recall that we treat our problems as containing a single
variable, which may be a tuple, so we need to only consider symmetry breaking
for a single variable X. In this paper, we always base our symmetry breaking
on a lex-leader constraint LLĺpG,Xq. In this situation, sound symmetry break-
ing constraints will be implied by LLĺpG,Xq, and complete symmetry breaking
constraints will imply LLĺpG,Xq as well.

To completely break the unnamed type symmetries of a variable X, we use
LLĺpG,Xq, where G is the symmetry group acting on ValpXq and ĺ is a total
ordering on ValpXq. So we can eliminate unnamed type symmetries in the follow-
ing way, the proof of which follows from the correctness of lex-leader constraints
eliminating all but one solution in each equivalence class.

Proposition 1. Starting with an Essence model M with unnamed types
T1, T2, . . . , Tk of size s1, s2, . . . , sk respectively, we can obtain an equivalent model
(in the sense that there is a bijection between the solution sets) without un-
named types in the following way. Letting V1, V2, . . . , Vn be the decision variables
of M , first replace each unnamed type Ti by an enumerated type with values
1Ti

, 2Ti
, . . . , siTi

. Then let X be a new decision variable representing the tu-
ple pV1, V2, . . . , Vnq. Finally, we add the lex-leader constraint LLĺpSympT1q ˆ

SympT2q ˆ . . . ˆ SympTkq, Xq, where ĺ is a total ordering on ValpXq.



Breaking the Symmetries of Indistinguishable Objects 11

Therefore, we need a total ordering of ValpT q for any type T that is not
constructed from unnamed types. We shall define these orderings in the next
subsection. This will then inform us on how we can refine constraints of the
form X ĺ Y when X and Y are of abstract types.

Before we move on, note that there are many papers which consider different
methods of generating subsets of symmetry breaking constraints (see [13] for an
overview). The most common technique is to replace LLĺpG,Xq with LLĺpS,Xq

for some subset S of G, to obtain sound but incomplete symmetry breaking
constraints. When G is a direct product G1 ˆG2, we may use LLĺpG1 YG2, Xq

instead. When G is the symmetric group Symptx1, x2, . . . , xnuq, we can take
LLĺpS,Xq where S “ tpxi, xjq | 1 ď i, j ď nu consists of all permutations in G
that swap two elements. Alternatively, we can take S to be tpxi, xi`1q | 1 ď i ă

nu, the set of all permutations in G that swaps any consecutive points. Examples
of the constraints added can be found in the .trace files of our repository https:

//github.com/stacs-cp/CPAIOR2025-Symmetry.

Total Ordering for All Types We shall describe a general approach to defin-
ing a total ordering ĺT of ValpT q for any given type T not constructed from
unnamed types. To simplify notations, we drop the subscript T when doing so
will not cause confusion. The actual ordering used does not matter for correct-
ness, as long as it is a total order. We first define an order on multisets in terms
of the ordering on its members’ type. We then show how ordering on other types
can be defined in terms of the multiset ordering. This is the ordering used in our
implementation in Conjure.

For the ordering on multiset, we used an ordering very similar to one in the
literature [12,16]. Let M be a type consisting of multisets of elements of type S
and ĺS is an ordering of ValpSq. We say that m1 ĺM m2 if and only if one of the
following is true: (i) m2 “ H; (ii) m1,m2 ‰ H and minpm1q ăS minpm2q; (iii)
m1,m2 ‰ H and minpm1q “ minpm2q and m1ztminpm1qu ĺM m2ztminpm2qu.
This ordering may be unintuitive, but it is chosen so that ordering on multisets is
equivalent to lex-ordering of a natural representation (specifically the occurrence
representation; see, for example, [16] for proof). Since multisets are abstract
types, constraints X ĺM Y , when X and Y are multisets, will need to be
refined, and we can do so using this occurrence representation. The ordering for
all other types can be found in the following definition.

Definition 4. Let T be an Essence type not constructed from any unnamed
types. We define a total ordering ĺT for values ValpT q of type T recursively by:

1. if ValpT q consists of integers, we take ĺT to be ď on integers;
2. if ValpT q consists of Boolean, we use false ĺT true;
3. if ValpT q consists of enumerated types, then x ĺT y if x occurs before y in

the definition of the enumerated type;
4. if ValpT q consists of matrices or tuples of an inner type S, then take ĺT to

be lexicographical order ĺSlex over an order ĺS for the inner type;
5. if ValpT q consists of multisets of type S, take ĺT to be the ĺM above.

https://github.com/stacs-cp/CPAIOR2025-Symmetry
https://github.com/stacs-cp/CPAIOR2025-Symmetry
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Note again that using Remark 1, this definition gives an ordering for all
Essence types. An ordering for all types in other modelling languages can be
defined in a similar way, by defining compound types in terms of multisets, tuples
and matrices, and defining a concrete total ordering on each atomic type.

Remark 2. We can therefore refine constraints of the form X ĺ Y to: X ď Y
for the appropriate atomic ordering ď if X and Y are atomic; X ĺlex Y if
ValpXq and ValpY q are matrices or tuples, and to r´freqpX, iq|i P Xs ĺlex

r´freqpY, iq|i P Xs, using an ordering ofX, if they are (multi)sets, where freqpX, iq
gives the number of occurrence of i in X. As the base cases in Definition 4 are
ordering ď of atomic types, these ĺlex will eventually be rewritten to ďlex.

4 Implementation in Conjure

We outline the implementation of the symmetry breaking method described in
this paper within Conjure. The complete implementation can be found in the
Conjure repository at https://github.com/conjure-cp/conjure.

Permutations We introduce a new Essence type permutation. We allow
permutations of integers, enumerated types or unnamed types. Permutation is
available as a domain constructor, using keywords permutation of, and takes
either an integer, enumerated or unnamed type domain as argument. Permu-
tation values and expressions are written in cycle notations. Each permutation
has an attribute NrMovedPoints, which gives the number of points that are not
fixed by the permutation.

Permutations can be naturally represented as bijective total functions, which
in turn can be represented as 1-dimensional matrices, where the element at a
certain index gives the image of the index. Each permutation is stored with its
inverse. This is because it turns out we almost always need to use the inverse of a
permutation during symmetry breaking, and storing both the permutation and
its inverse was the most efficient option in practice. The operator permInverse
gets the inverse of a permutation. It uses the fact that the inverse of the inverse
of a permutation is the original permutation, so there is no need to calculate any
further permutation applications when calling permInverse twice.

The operator image takes a permutation g on a type T and a value x of type
T such that imagepg, xq gives the image of x under g. The more general operator
transformpg,Xq represents the image of the induced action of g on the values
of its second argument. If g is a permutation on a type T , and the type of X
contains no reference to T , then transformpg,Xq is rewritten to X.

Unnamed Types Members of an unnamed type can only be used as operands
of an equality expression with other values of the same unnamed type. Un-
named types domains, similar to enumerated types, are eventually converted to
int(1..s) where s is the size of the unnamed type. During refinements, un-
named types are converted to tagged integers, which behaves like integers but

https://github.com/conjure-cp/conjure
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remembers the name (IntTag) of the unnamed type it comes from. The tags are
important for correct permutation applications, and we are careful to only add
valid symmetry breaking constraints on each type of tagged integer. Permuta-
tions on an unnamed type T are refined into permutations on integers tagged
with T , and image and transform will only change integer values or variables
with the appropriate tag. The refinement rules of Conjure ensure that when
tagged integers are refined, the tag is preserved. For example a set of integers
tagged with T is refined into a matrix indexed by integers tagged with T of
Booleans. As seen in Proposition 1, each declaration of an unnamed type T will
be removed, and all other domains constructed using T are replaced with tagged
(with T ) integers.

Symmetry Breaking Constraints As discussed in Section 3.3, we break the
symmetries induced by unnamed types using lex-leader constraints. Our im-
plementation allows sound but incomplete symmetry breaking by replacing the
group in LL with a subset, which is determined by run-time flags. For a model
with unnamed types T1, T2, . . . , Tk and decision variables V1, V2, . . . , Vn, the first
set of flags defines the subsets of the unnamed symmetries SympTiq to be used in
the lex-leader: for each i P t1, 2, . . . , ku, we take Si :“ tpjTi

, pj ` 1qTi
q | 1 ď j ă

|Ti|u if with the Consecutive flag; Si :“ tpt, uq | t, u P Tiu with the AllPairs

flag; and Si :“ SympTiq with the AllPermutations flag. The second set of flags
determines whether to take the product or the union of these Si’s: the con-
straint used is

Ź

1ďiďk LLpSi, pV1, V2, . . . , Vnqq if with the Independently flag;
and is LLpS1 ˆS2 ˆ . . .ˆSk, pV1, V2, . . . , Vnqq if with the Altogether flag. Each
LLpS,Xq is expressed as the conjunction, over all possible permutations g P S, of
expressions of form X .<= transformpg,Xq. Here .<= represents the total order
ĺT from Definition 4, where T can be any suitable type.

Permutation Application Starting from X .<= transformpg,Xq from above,
if g is a list of permutations rg1, g2, . . . , grs representing an element of a direct
product, we rewrite expressions of the form X <= transformprg1, g2, . . . , grs, Xq

to the conjunction ofX .<=xi and xi “ transformpgi, xi´1q for 1 ď i ď k, where
x0 is X and the xi’s are new variables. The refinement rules for transformpg, xq,
when g is a permutation, follow from Definition 2. Conjure’s general design,
which applies rewrite rules until all high-level types and operators are removed,
can easily handle this new set of rules. E.g. for a matrix X, we rewrite each entry
transformpg,Xqris to transformpg,XrtransformppermInversepgq, iqsq. These
internal transform and permInverse are further refined, until all permutations
have been removed.

Refining Ordering Constraints Each constraint of the form X.<= Y is re-
fined to symOrderpXq.<= symOrderpY q. Here symOrderpXq signifies that we are
to rewrite the expression using Remark 2. So X.<= Y will eventually be written
to expressions of the form X 1 <=lex Y 1 or X 1 <= Y 1 for some X 1 and Y 1, where
<= is the order of atomic types and <=lex the lexicographic ordering over <=.
The lexicographic constraints will typically contain every variable, but can often
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Table 1. How unnamed types occur in some problems

Problem Type

Lam’s Problem [28] matrix indexed by [T,T] of ?

Set-theoretic Yang-Baxter [3] matrix indexed by [T,T] of T

Balanced Incomplete Block Design [22] matrix indexed by [T1, T2] of ?

Social Golfers [14] matrix indexed by [T1, T2] of T3

Covering Array [26] matrix indexed by [T1, T2] of T3

Template Design [27]
matrix indexed by rT1s of ?

matrix indexed by rT1, T2s of ?

Rack Configuration [15] function T Ñ ?

Semigroups [8] function pT, T q Ñ T

Vellino’s Problem [1]
function: T1 Ñ T2

function: T1 Ñ mset of T3

Sports Tournament Scheduling [29] relation of (T1 * T2 * set of T3)

be simplified, e.g. ra, b, c, ds ďlex ra, d, b, ds can be simplified to rb, cs ďlex rd, bs.
Rather than perform these simplifications while initially generating and refining
the lexicographic ordering constraints, a set of general rules for simplifying lexi-
cographic ordering constraints [30] is run after refinement is finished. Finally the
model undergo further refinements until only types in Essence Prime remain.

5 Case Studies and Discussion

We give a few case studies to demonstrate our implementation of the method.
Future work will include more in-depth experimentation. We consider the prob-
lems from Section 3.1, and three further problems with matrix types as decision
variables, but with varying number of unnamed types occurring in various posi-
tions, as well as some examples where the decision variables are of different types.
The types of the decision variables of these problems are summarised in Table 1,
where the T and Ti’s are all distinct unnamed types, and ‘?’ denotes other types
that are not constructed from any unnamed types. The models in Essence, and
the automatically generated Essence Prime models, for all combinations of
flags, can be found at https://github.com/stacs-cp/CPAIOR2025-Symmetry.
The resulting models were manually inspected for correctness. In particular, the
number of solutions for small instances of the set-theoretic Yang-Baxter equation
and the semigroup problem are consistent with those in the literature [19,20].

The different methods of symmetry breaking provide an easy way of choosing
between different trade-offs. Altogether-AllPermutations will break all sym-
metries, producing an exact list of symmetry-broken solutions, at the cost of
a very large number of constraints. The fact that we need many constraints is
not surprising, as the symmetries of unnamed types include several cases which
have been proved theoretically difficult. Consider the solutions to a problem
with a decision variable of type matrix indexed by [T,T] of bool, with no
constraints. These solutions can be viewed as directed graphs, so completely

https://github.com/stacs-cp/CPAIOR2025-Symmetry
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breaking the unnamed type symmetries is equivalent to finding the canonical
image of these graphs. Similarly, a set of set (size 2) of T can be viewed
as the edges of an undirected graph. Checking if two solutions of these problems
are equivalent is therefore as hard as the graph isomorphism problem. Further,
a variable of type matrix indexed by [T1,T2] of bool has row and column
symmetries, and efficient generation of complete symmetry breaking constraints
is also at least as hard as the graph isomorphism problem [4].

If we consider a matrix indexed by two unnamed types, e.g. in the balanced
incomplete block design problem, then Independently-Consecutive produces
“double-lex”, one of the most widely used symmetry breaking methods [9]. The
constraints generated by Independently-AllPairs have also been used in prac-
tice [11], and can lead to faster solving. Deciding exactly what level of symmetry
breaking is best for a particular class of problem is future work.

6 Conclusion and Future Work

In this paper, we show how the symmetries of indistinguishable objects can
be broken completely together with an implementation in Essence. We do so
by introducing the new permutation type, as well as a total ordering for all
possible types in Essence, which allows us to express and automatically generate
symmetry breaking constraints for unnamed types. We have also seen how we
can soundly but incompletely break unnamed type symmetries by controlling
the permutations used in the lex-leader constraints. Our abstract treatments
of types and unnamed type symmetries make our method generalisable to any
other solving paradigms with indistinguishable objects. This paper also serves
as a theoretical background for further work in this area.

Much further work awaits. The symmetry breaking method here can be pro-
hibitively expensive in some cases. We therefore will investigate how some relax-
ations of the ordering constraints can be used to give faster symmetry breaking
method. Furthermore, the static ordering described in Section 3.3 can also be a
source of inefficiency. This is because, when rewriting multisets to their occur-
rence representations in Remark 2, the elements in r´freqpX, iq|i P Xs must be
sorted according to the total ordering of the inner types. This can be particu-
larly difficult when we have deeply nested types. In general, it is not possible to
produce a single global ordering which can be refined to a simple and efficient
set of constraints in all possible representations. We shall therefore investigate
the use of representation-specific total orderings.

Note that the symmetry breaking techniques in this paper will work even
when the symmetry groups on unnamed types are not necessarily symmetric
groups. We shall explore how the new permutation type can be used by an expert
user for more control on symmetry breaking, in allowing arbitrary permutation
groups, and see how we can automatically handle the symmetries for commonly
occurring permutation groups, such as the chessboard symmetry. Generally, we
intend to perform a more extensive analysis of the symmetry breaking constraints
produced from our methods.
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